力密度法是由 Linkwitz 及 Schek 等提出的一种用于索网结构的找形方法,若将膜离散为等代的索网,该方法也可用于膜结构的找形。
所谓力密度是指索段的内力与索段长度的比值。
把索网或等代的膜结构看成是由索段通过结点相连而成。在找形时,边界点为约束点,中间点为自由点,通过指定索段的力密度,建立并求解结点的平衡方程,可得各自由结点的坐标,即索网的外形。不同的力密度值,对应不同的外形,当外形符合要求时,由相应的力密度即可求得相应的预应力分布值。
力密度法的特点是只需求解线性方程组,计算精度能满足工程要求,在德国较为流行。著名的膜结构设计软件 EASY 就是用力密度法找形的。
动力松弛法是一种求解非线性问题的数值方法,更早将这种方法用于索网结构的是 Day 和 Bunce,而 Barnes 从七十年代以来的系列研究工作,成功地将这一方法发展应用于索网及膜结构的找形。
动力松弛法从空间和时间两方面将结构体系离散化。空间上的离散化是将结构体系离散为单元和结点,并假定其质量集中于结点上。如果在结点上施加激振力,结点将产生振动,由于阻尼的存在,振动将逐步减弱,更终达到静力平衡。时间上的离散化,正是针对结点的振动过程而言的。具体点说,先将初始状态的结点速度和位移设置为零,在激振力作用下,结点开始振动,跟踪体系的动能,当体系的动能达到极值时,将结点速度设置为零;跟踪过程从这个几何重新开始,直到不平衡力为极小,达到新的平衡。
动力松弛法不需要形成结构的总体刚度矩阵,在找形过程中,可修改结构的拓扑和边界条件,计算可以继续并得到新的平衡状态,该方法用于求解给定边界条件下的平衡曲面。